Comparing methods of analyzing fMRI statistical parametric maps.

نویسندگان

  • Jonathan Marchini
  • Anne Presanis
چکیده

Approaches for the analysis of statistical parametric maps (SPMs) can be crudely grouped into three main categories in which different philosophies are applied to delineate activated regions. These being type I error control thresholding, false discovery rate (FDR) control thresholding and posterior probability thresholding. To better understand the properties of these main approaches, we carried out a simulation study to compare the approaches as they would be used on real data sets. Using default settings, we find that posterior probability thresholding is the most powerful approach, and type I error control thresholding provides the lowest levels of type I error. False discovery rate control thresholding performs in between the other approaches for both these criteria, although for some parameter settings this approach can approximate the performance of posterior probability thresholding. Based on these results, we discuss the relative merits of the three approaches in an attempt to decide upon an optimal approach. We conclude that viewing the problem of delineating areas of activation as a classification problem provides a highly interpretable framework for comparing the methods. Within this framework, we highlight the role of the loss function, which explicitly penalizes the types of errors that may occur in a given analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pattern Classification and Analysis of Brain Maps through fMRI data with Multiple Methods

The activity patterns in functional Magnetic Resonance Imaging (fMRI) data are unique and located in specific location in the brain. The main aim of analyzing these datasets is to localize the areas of the brain that have been activated by a predefined stimulus [1]. The basic analysis involves carrying out a statistical test for activation at thousands of locations in the brain. The analysis is...

متن کامل

Comparing fMRI Activity Maps from GLM and CCA at the Same Significance Level by Fast Random Permutation Tests on the GPU

Parametric statistical methods are traditionally employed in functional magnetic resonance imaging (fMRI) for identifying areas in the brain that are active with a certain degree of statistical significance. These parametric methods, however, have two major drawbacks. First, it is assumed that the observed data are Gaussian distributed and independent; assumptions that generally are not valid f...

متن کامل

Pattern Classification and Analysis of Brain Maps through fMRI data with Multiple Methods

The activity patterns in functional Magnetic Resonance Imaging (fMRI) data are unique and located in specific location in the brain. The main aim of analyzing these datasets is to localize the areas of the brain that have been activated by a predefined stimulus [1]. The basic analysis involves carrying out a statistical test for activation at thousands of locations in the brain. The analysis is...

متن کامل

Reproducibility of fMRI: effect of the use of contextual information.

We studied the effect of use of contextual information on the reproducibility of the results in analysis of fMRI data. We used data from a repeated simple motor fMRI experiment. In the first approach, statistical parametric maps were computed from a spatially unsmoothed data and thresholded using a Bonferroni corrected threshold. In the second approach, the maps were computed from a spatially u...

متن کامل

Bias in Resampling-Based Thresholding of Statistical Maps in fMRI

Selecting a threshold for the statistical parameter maps in functional MRI (fMRI) is a delicate matter. The use of advanced test statistics and/or the complex dependence structure of the noise may preclude parametric statistical methods for finding appropriate thresholds. Non-parametric statistical methodology has been presented as a feasible alternative. In this paper we discuss resampling-bas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 22 3  شماره 

صفحات  -

تاریخ انتشار 2004